		ANALOG AND DIGITAL ELECTRONICS				
Adichunchanagiri University						
(Effective from the Academic Year 2019 -20) SEMESTER – III						
Subject Code	18CS32	CIE Marks	40			
Number of Contact Hours/Week	4	SEE Marks	60			
Total Number of Contact Hours	50	Exam Hours	3 Hrs			
CREDITS –4						
Course Learning Objectives: This course (18CS32) will enable students to:						
 Explain the use of photo electronics devices, 555timer IC, Regulator ICs and uA74 opamap IC. Make use of simplifying techniques in the design of combinational circuits. Illustrate combinational and sequential digitalcircuits Demonstrate the use of flip-flops and apply for registers Design and test counters, Analog-to-Digital and Digital-to-Analog conversion techniques. 						
Module 1			Hours			
Crystal Displays, and Optocouplers. Wave Shaping Circuits: Integrated Circuit Multi vibrators Linear Power Supplies: Linear IC Voltage, Regulated Power Suppy Parameters Operational Amplifier Application Circuits : Inverting Amplifier, Non-inverting amplifier, Voltage Follower, Summing Amplifier, Difference Amplifier, Averagor, Integrator, Differentiator, Peak Detector, Absolute Value Circuit, Comparotor, Instrumentation Amplifier, Relaxation Oscillator, Current-to-Voltage and Voltage-to-CurrentConverter Textbook 1: Chapter7 – 7.4, 7.5, 7.10, 7.11, 7.14; Chapter13 – 13.10; Chapter14 – 14.6, 14.7; Chapter17 – 17.1, 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, 17.8, 17.12, 17.13, 17.14, 17.17, 17.19, 17.20, 17.21 RBT: L1, L2			er, or, 00 10			
Module 2 Combinational Logic Circuits: Sum-of-Products Method, Truth Table to Karnaugh Map, Pairs Quads, and Octets, Karnaugh Simplifications, Don't-care Conditions, Product-of-sums Method, Product-of-sums simplifications, Simplification by Quine-McCluskyMethod Introduction to HDL, HDL Implementation Models. Text book 2: Chapter2 – 2.5; Chapter3 – 3.2 to 3.9, 3.11. RBT: L1, L2 Module 3			1			
Module 3Data-Processing Circuits: Multiplexers, Demultiplexers, 1-of-16 Decoder, BCD to Decimal Decoders, Seven Segment Decoders, Encoders, Exclusive-OR Gates, Parity Generators and Checkers, Magnitude Comparator, Programmable Array Logic, Programmable Logic Arrays, HDL Implementation of Data Processing Circuits.Text book 2: Chapter4 – 4.1 to 4.9, 4.11, 4.12, 4.14.						

RBT: L1, L2, L3			
Module 4			
Flip- Flops: RS Flip-Flops, Gated Flip-Flops, Edge-triggered RS FLIP-FLOP, Edge-triggered D FLIP-FLOPs, Edge-triggered JK FLIP-FLOPs, FLIP-FLOP Timing, JK Master-slave FLIP-FLOP, HDL Implementation of FLIP-FLOP.			
Registers: Types of Registers, Serial In - Serial Out, Serial In - Parallel out, Parallel In - Serial Out, Parallel In - Parallel Out, Universal Shift Register, Applications of Shift Registers.			
Text book 2: Chapter8 – 8.1 to 8.7, 8.12; Chapter9: 9.1 to 9.6			
RBT: L1, L2, L3 Module 5			
 Counters: Asynchronous Counters, Decoding Gates, Synchronous Counters, Changing the Counter Modulus, Decade Counters, Counter Design using HDL. D/A Conversion and A/D Conversion: Variable, Resistor Networks, Binary Ladders, D/A Converters, D/A Accuracy and Resolution, A/D Converter-Simultaneous Conversion, A/D Converter-Counter Method, Continuous A/D Conversion 			
Text book 2:- Chapter10 – 10.1 to 10.5, 10.9; Ch 12: 12.1 to 12.7 RBT: L1, L2, L3			
Course Outcomes: The student will be able to :			
 Design and analyze application analog circuits using photo devices, timer IC, power supply and regulator IC and opamp. Simplify digital circuits using Karnaugh Map, POS and Quine-McClusky Methods Explain Gates and flipflops and make us in designing different data processing circuits, registers and counters and compare the types. Develop simple HDLprograms Explain the basic principles of A/D and D/A conversion circuits and develop thesame. 			
Question Paper Pattern:			
 The question paper will have tenquestions. Each full Question consisting of 20marks There will be 2 full questions (with a maximum of four sub questions) from eachmodule. Each full question will have sub questions covering all the topics under amodule. The students will have to answer 5 full questions, selecting one full question from each module. 			
Textbooks:			
 Anil K Maini, Varsha Agarwal, Electronic Devices and Circuits, Wiley, 2012. Donald P Leach, Albert Paul Malvino & Goutam Saha, Digital Principles and Applications, 8 Edition, Tata McGraw Hill,2015. 			
Reference Books:			
 M. Morris Mani, Digital Design, 4th Edition, Pearson Prentice Hall, 2008. David A. Bell, Electronic Devices and Circuits, 5th Edition, Oxford University Press, 20 	08		